Abstract
Cerebral ischemic stroke is a common neuron loss disease that is caused by the interruption of the blood supply to the brain. In order to enhance the CIS outcome, both identifying the treatment target of ischemic brain damage in the acute phase and developing effective therapies are urgently needed. Scutellarin had been found to be beneficial to ischemic injuries and has been shown to have potent effects in clinical application on both stroke and myocardial infarction. However, whether scutellarin improves ischemic brain damage in the acute phase remains unknown. In this study, the protective effects of scutellarin on ischemic brain damage in the acute phase (within 12 h) were illustrated. In middle cerebral artery occlusion and reperfusion (MCAO/R) modeling rats, the Z-Longa score was significantly down-regulated by 25% and 23.1%, and the brain infarct size was reduced by 26.95 ± 0.03% and 25.63 ± 0.02% when responding to high-dose and low-dose scutellarin treatments, respectively. H&E and TUNEL staining results indicated that the neuron loss of the ischemic region was improved under scutellarin treatment. In order to investigate the mechanism of scutellarin's effects on ischemic brain damage in the acute phase, changes in proteins and metabolites were analyzed. The suppression of scutellarin on the glutamate-inducing excitatory amino acid toxicity was strongly indicated in the study of both proteomics and metabolomics. A molecular docking experiment presented strong interactions between scutellarin and glutamate receptors, which score much higher than those of memantine. Further, by performing a parallel reaction monitoring-mass spectrometry (PRM-MS) study on both the cortex and hippocampus tissue of the ischemic region, we screened the scutellarin-regulating molecules that are involved in both the release and transportation of neurotransmitters. It was found that the aberrant levels of glutamate receptors, including EAAT2, GRIN1, GRIN2B, and GRM1, as well as of other glutamatergic pathway-involving proteins, including CAMKK2, PSD95, and nNOS, were significantly regulated in the ischemic cortex. In the hippocampus, EAAT2, GRIN1, nNOS, and CAM were significantly regulated. Taken together, scutellarin exerts potent effects on ischemic brain damage in the acute phase by regulating the activity of neurotransmitters and reducing the toxicity of excitatory amino acids in in neurons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.