Abstract

We describe the engineering of the electromagnetic vacuum in a 2D–3D photonic bandgap (PBG) hetero-structure. This facilitates the development of novel active devices and the observation of novel quantum electrodynamic phenomena. We consider a specific architecture suitable as an all-optical micro-transistor capable of novel ultra-fast response with low switching power requirements. This relies on a unique collective atomic switching and population inversion achieved by coherent resonant pumping in a suitably engineered vacuum. Specific waveguide architectures within the 3D PBG micro-chip provide local density-of-states (LDOS) peaks near their cutoff frequency. These provide “building blocks” for electromagnetic vacuum engineering without recourse to conventional high Q-factor micro-cavities. For the all-optical micro-transistor, a fork shape LDOS within the micro-chip is desirable, using trimodal waveguide architecture. We delineate the functional robustness of these architectures to disorder caused by manufacturing errors within the PBG micro-chip.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call