Abstract

The development of a simple and efficient methanol-resistant membrane strategy is of great significance for improvement of the performance of fuel cells, making it an attractive and challenging topic. In this work, sulfonated covalent triazine framework (SCTF) nanosheets are prepared by a micro-interface method and post-sulfonation, which show excellent dispersion in polar solutions, such as water and N, N-Dimethylacetamide (DMAc). Then a series of composite proton exchange membranes (SCTF-x@SPP-co-PAEKs) are prepared by blending these SCTF nanosheets with sulfonated micro-block copolymers (SPP-co-PAEKs) resin. The results show that the appropriate addition of SCTF can significantly improve the proton conductivity (PC), methanol resistance and fuel cell performance of the prepared composite membrane, which can be attributed to the good interfacial compatibility between the SCTF nanosheets and the sulfonated micro-block copolymer matrix. The passive direct methanol fuel cells (DMFCs) with SCTF-x@SPP-3 membrane exhibit power density in the range of 28.0–33.3 mW cm−2 at 25 °C, which is superior to the related values of the pristine membrane and the commercial Nafion® series membranes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.