Abstract

We present scTenifoldXct, a semi-supervised computational tool for detecting ligand-receptor (LR)-mediated cell-cell interactions and mapping cellular communication graphs. Our method is based on manifold alignment, using LR pairs as inter-data correspondences to embed ligand and receptor genes expressed in interacting cells into a unified latent space. Neural networks are employed to minimize the distance between corresponding genes while preserving the structure of gene regression networks. We apply scTenifoldXct to real datasets for testing and demonstrate that our method detects interactions with high consistency compared with other methods. More importantly, scTenifoldXct uncovers weak but biologically relevant interactions overlooked by other methods. We also demonstrate how scTenifoldXct can be used to compare different samples, such as healthy vs. diseased and wild type vs. knockout, to identify differential interactions, thereby revealing functional implications associated with changes in cellular communication status.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.