Abstract

Understanding genetic variation at the single-cell level is crucial for insights into cellular heterogeneity, clonal evolution, and gene expression regulation, but there is a scarcity of tools for visualizing and analyzing cell-level genetic variants. We introduce scSNViz, a comprehensive R-based toolset for visualization and analysis of cell-specific expressed Single Nucleotide Variants (sceSNVs) within cell-barcoded single-cell RNA-sequencing (scRNA-seq) data. ScSNViz offers 3D sceSNV visualization capabilities for dimensionally reduced scRNA-seq gene expression data, compatibility with popular scRNA-seq processing tools like Seurat, cell-type classification tools such as SingleR and scType, and trajectory inference computation using Slingshot. Furthermore, scSNViz conducts estimation, summary, and graphical representation of statistical metrics pertaining to sceSNVs distribution and expression across individual cells. It also provides support for the analysis of individual sceSNVs as well as sets comprising multiple expressed sceSNVs of interest. ScSNViz is implemented as user-friendly R-scripts, freely available on https://horvathlab.github.io/NGS/scSNViz , supported by help utilities, and requiring no specialized bioinformatics skills for use.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.