Abstract

BackgroundSingle-cell DNA sequencing is getting indispensable in the study of cell-specific cancer genomics. The performance of computational tools that tackle single-cell genome aberrations may be nevertheless undervalued or overvalued, owing to the insufficient size of benchmarking data. In silicon simulation is a cost-effective approach to generate as many single-cell genomes as possible in a controlled manner to make reliable and valid benchmarking.ResultsThis study proposes a new tool, SCSilicon, which efficiently generates single-cell in silicon DNA reads with minimum manual intervention. SCSilicon automatically creates a set of genomic aberrations, including SNP, SNV, Indel, and CNV. Besides, SCSilicon yields the ground truth of CNV segmentation breakpoints and subclone cell labels. We have manually inspected a series of synthetic variations. We conducted a sanity check of the start-of-the-art single-cell CNV callers and found SCYN was the most robust one.ConclusionsSCSilicon is a user-friendly software package for users to develop and benchmark single-cell CNV callers. Source code of SCSilicon is available at https://github.com/xikanfeng2/SCSilicon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call