Abstract

BackgroundWith the development of modern sequencing technology, hundreds of thousands of single-cell RNA-sequencing (scRNA-seq) profiles allow to explore the heterogeneity in the cell level, but it faces the challenges of high dimensions and high sparsity. Dimensionality reduction is essential for downstream analysis, such as clustering to identify cell subpopulations. Usually, dimensionality reduction follows unsupervised approach.ResultsIn this paper, we introduce a semi-supervised dimensionality reduction method named scSemiAE, which is based on an autoencoder model. It transfers the information contained in available datasets with cell subpopulation labels to guide the search of better low-dimensional representations, which can ease further analysis.ConclusionsExperiments on five public datasets show that, scSemiAE outperforms both unsupervised and semi-supervised baselines whether the transferred information embodied in the number of labeled cells and labeled cell subpopulations is much or less.Supplementary InformationThe online version contains supplementary material available at 10.1186/s12859-022-04703-0.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.