Abstract

The desire of improving various processes like enhanced oil recovery (EOR), water treatment technologies, biomass extraction, organic synthesis, carbon capture etc. in which conventional surfactants have been traditionally utilized; prompted various researchers to explore the self-assembly and aggregation behavior of different kinds of surface-active molecules. Ionic liquids (ILs) with long alkyl chain present in their structure constitute the advantageous properties of surfactant and ILs, hence termed as surface-active ionic liquids (SAILs). The addition of ILs and SAILs significantly influence the surface-activity and aggregation behavior of industrially useful conventional surfactants. After a brief review of ILs, SAILs and surfactants, the prime focus is made on analyzing the self-assembly of SAILs and the mixed micellization behavior of conventional surfactants with different ILs.

Highlights

  • Exploring the self-assembly, surface-activity as well as aggregation behavior of newly synthesized surface-active agents having improved properties is crucial for their utilization in place of traditionally used surfactants to enhance their quality and performance in various processes

  • The mixed micelles have shown greater stability as well as enhanced applicability in comparison to ordinary micelle. The properties of such mixed systems can be modified according to the requirement by just varying the composition of surface-active monomers as well as the temperature of the system

  • The nature of interactions present in mixed micellar systems can be understood by analyzing mixed micellar parameters obtained by applying various theoretical models

Read more

Summary

Introduction

Exploring the self-assembly, surface-activity as well as aggregation behavior of newly synthesized surface-active agents having improved properties is crucial for their utilization in place of traditionally used surfactants to enhance their quality and performance in various processes. El Seoud et al (2007) synthesized ILs based upon 1-alkyl-3-methylimidazolium chloride RMeImCl where R = C10, C12, C14, and C16, respectively, and investigated their aggregation in an aqueous medium by using surface tension, conductivity measurement, fluorescence spectroscopy as well as static light scattering technique.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.