Abstract
Among several traditional and novel mobile app recommender techniques that utilize a diverse set of app-related features (such as an app’s Twitter followers, various version instances, etc.), which app-related features are the most important indicators for app recommendation? In this paper, we develop a hybrid app recommender framework that integrates a variety of app-related features and recommendation techniques, and then identify the most important indicators for the app recommendation task. Our results reveal an interesting correlation with data from third-party app analytics companies; and suggest that, in the context of mobile app recommendation, more focus could be placed in user and trend analysis via social networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.