Abstract

Scroll waves are found in physical, chemical and biological systems and underlie many significant processes including life-threatening cardiac arrhythmias. The theory of scroll waves predicts scroll wave dynamics should be substantially affected by heterogeneity of cardiac tissue together with other factors including shape and anisotropy. In this study, we used our recently developed analytical model of the human ventricle to identify effects of shape, anisotropy, and regional heterogeneity of myocardium on scroll wave dynamics. We found that the main effects of apical-base heterogeneity were an increased scroll wave drift velocity and a shift towards the region of maximum action potential duration. We also found that transmural heterogeneity does not substantially affect scroll wave dynamics and only in extreme cases changes the attractor position.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.