Abstract
In the present paper the concept of screw in classical mechanics is expressed in matrix form, in order to formulate the dynamical equations of the multibody systems. The mentioned method can retain the advantages of the screw theory and avoid the shortcomings of the dual number notation. Combining the screw-matrix method with the tool of graph theory in Roberson/Wittenberg formalism. We can expand the application of the screw theory to the general case of multibody systems. For a tree system, the dynamical equations for eachj-th subsystem, composed of all the outboard bodies connected byj-th joint can be formulated without the constraint reaction forces in the joints. For a nontree system, the dynamical equations of subsystems and the kinematical consistency conditions of the joints can be derived using the loop matrix. The whole process of calculation is unified in matrix form. A three-segment manipulator is discussed as an example.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.