Abstract

In the industrial production, as an important transmission part, the screw thread is applied extensively in many automation equipments. The traditional measurement methods of screw thread parameter, including integrated test methods of multiparameters and the single parameter measurement method, belong to contact measurement method. In practical the contact measurement exists some disadvantages, such as relatively high time cost, introducing easily human error and causing thread damage. In this paper, as a new kind of real-time and non-contact measurement method, a screw thread parameter measurement system based on image processing method is developed to accurately measure the outside diameter, inside diameter, pitch diameter, pitch, thread height and other parameters of screw thread. In the system the industrial camera is employed to acquire the image of screw thread, some image processing methods are used to obtain the image profile of screw thread and a mathematics model is established to compute the parameters. The C++Builder 6.0 is employed as the software development platform to realize the image process and computation of screw thread parameters. For verifying the feasibility of the measurement system, some experiments were carried out and the measurement errors were analyzed. The experiment results show the image measurement system satisfies the measurement requirements and suitable for real-time detection of screw thread parameters mentioned above. Comparing with the traditional methods the system based on image processing method has some advantages, such as, non-contact, easy operation, high measuring accuracy, no work piece damage, fast error analysis and so on. In the industrial production, this measurement system can provide an important reference value for development of similar parameter measurement system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.