Abstract

Forward kinematics analysis of parallel manipulators requires solving highly complicated nonlinear equations, which deriving a closed-form solution is often a real challenge. Being used in closed loop position control of mechanisms, the forward kinematics solution of parallel manipulators is of great importance. Here, we investigate the mobility, forward kinematics, and inverse kinematics of a previously introduced three-degree-of-freedom spatial parallel manipulator from a new perspective. The manipulator is a 3-CRRR parallel mechanism proposed for object manipulation tasks. The mobility of the mechanism is, first, discussed using screw theory, showing that the robot has only three translational degrees of freedom. Next, the forward kinematics of the robot is analyzed based on a geometric approach. Using this method, which is the main novelty of our article, the spatial representation of the manipulator is transformed to a simpler planar representation by a projection-based interpretation, to reduce the complexity of kinematic equations. Afterward, the position of the end-effector is extracted by some algebraic expressions written based on geometrical properties of the robot. Then, the inverse kinematics of the mechanism is analyzed through the same approach. Finally, the kinematic modeling is verified using numerical and analytical methods. The results show that the obtained kinematic model has high accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.