Abstract

Beams with spatial compliance can be deformed as bending in a plane, twisting, and extending. In terms of the screw theory on rigid body motions, the concept of “deflection screw” is introduced, a spatial compliant beam theory via the deflection screw is proposed, and the spatial compliance of such a beam system is presented and analysed based on the material theory and fundamental kinematic assumptions. To study the dynamics of the spatially compliant beam, the potential energy and the kinetic energy of the beam are discussed by using the screw theory to obtain the Lagrangian. The Rayleigh-Ritz method is used to compute the vibrational frequencies based on discussions of boundary conditions and shape functions. The eigenfrequencies of the beam with spatial compliance are compared with those of individual deformation cases, pure bending, extension, or torsion. Finally, dynamics of a robot with two spatial compliant links and perpendicular joints is studied using the spatial compliant beam theory. Coupling between the joint rigid body motions and the deformations of spatial compliant links can easily be found in dynamic simulation. The study shows the effectiveness of using the screw theory to deal with the problems of dynamic modeling and analysis of mechanisms with spatially compliant links.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.