Abstract
In this article, we have explored screen printing as a fast and reliable process for the deposition of nanocomposite layer on glass fiber-reinforced plastic (GFRP) substrate for in situ structural health monitoring. The screen-printed sensor comprised of a thermoplastic matrix (high density polystyrene) and a dispersed nanofiller (carbon nanoparticles). Notches of different sizes (2.5 mm and 4.0 mm) were introduced to study the response of sensors to an existing damage. Stress concentrations were plotted across the width and the sensor results were correlated with the simulated stress concentrations to evaluate the response of sensors with respect to local stress concentrations. It was found that the screen-printed sensors responded to the stress concentrations since the layers were deposited in the vicinity of notches. The gauge factors altered due to the presence of notches indicating sensor sensitivity to the preexisting damage and resultant stress concentrations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.