Abstract

Throughout time, humans have used psychoactive plants and plant-derived products for spiritual, therapeutic and recreational purposes. Furthermore, the investigation of psychoactive plants such as Cannabis sativa (marijuana), Nicotiana tabacum (tobacco) and analogues of psychoactive plant derivatives such as lysergic acid diethylamide (LSD) have provided insight into our understanding of neurochemical processes and diseases of the CNS. Currently, many of these compounds are being used to treat a variety of diseases, such as depression and anxiety in the case of Piper methysticum Kava Kava (Martin et al., 2002; Singh and Singh, 2002). G-protein coupled receptors (GPCRs) are the most common molecular target for both psychoactive drugs and pharmaceuticals. The “receptorome” (that portion of the genome encoding ligand reception) encompasses more than 8% of the human genome (Roth et al., 2004) and as such provides a large number of possible targets for psychoactive drug interactions. A systematic, comprehensive study is necessary to identify novel active psychoactive plant-based compounds and the molecular targets of known compounds. Herein we describe the development of a high throughput system (HTS) to screen psychoactive compounds against the receptorome and present two examples ( Salvia divinorum, the “magic mint” hallucinogen and Banisteriopsis caapi, the main component of Ayahuasca, a psychoactive beverage) where HTS enabled the identification of the molecular target of each compound.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.