Abstract

Protein C (PC), a 62 kDa multi-modular zymogen, is activated to an anticoagulant serine protease (activated PC or APC) by thrombin bound to thrombomodulin on the surface of endothelial cells. PC/APC interacts with many proteins and the characterisation of these interactions is not trivial. However, molecular modelling methods help to study these complex biological processes and provide basis for rational experimental design and interpretation of the results. PC/APC consists of a Gla domain followed by two EGF modules and a serine protease domain. In this report, we present two structural models for full-length APC and two equivalent models for full-length PC, based on the X-ray structures of Gla-domainless APC and of known serine protease zymogens. The overall elongated shape of the models is further cross-validated using size exclusion chromatography which allows evaluation of the Stokes radius (rs for PC = 33.15 A; rs for APC = 34.19 A), frictional ratio and axial ratio. We then propose potential binding sites at the surface of PC/APC using surface hydrophobicity as a determinant of the preferred sites of intermolecular recognition. Most of the predicted binding sites are consistent with previously reported experimental data, while some clusters highlight new regions that should be involved in protein-protein interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.