Abstract

Phthalate esters (PAEs) are one of the most frequently detected organic pollutants in soils. In this work, the adsorption behaviors of di-ethyl phthalate (DEP) and dibutyl phthalate (DBP) on soils, humins (HM) and Clay organo-mineral complexes (Clay-OM) from four regions in China, Changchun (CC), Cangzhou (CZ), Yinchuan (YC), and Changsha (CS) were studied. The surface and structural properties of these sorbents were characterized using Brunauer-Emmett-Teller specific surface area, Fourier transform infrared spectroscopy, X-ray diffraction spectroscopy, and 13C nuclear magnetic resonance methods. The results showed that the CC soil has the largest pore volume (PV) and specific surface area (SSA). PV, SSA, and aliphatic carbon content of the samples ranked as Clay-OM>HM>soil. Adsorption experiments indicated that the Clay-OM exhibited the strongest adsorption affinity for both DBP and DEP, followed by HM, and then the soil samples. Furthermore, DEP and DBP adsorption amounts on the samples declined as follows: CC>CS>CZ>YC. To illustrate the dominant mechanisms for PAEs adsorption onto soil, the soil organic carbon content normalized adsorption coefficient (LogKoc) was correlated with several possible parameters using multiple parameter linear regression and significance testing. The R2 values of the DBP and DEP in multi-regression equations were 0.825 and 0.741 respectively, and the significance test suggested that pore structure and specific surface area had crucial influences on the adsorption progress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.