Abstract

Recent studies show that complex mechanisms are involved in arsenic-induced malignant transformation of cells. This study aimed to decipher molecular mechanisms associated with arsenic-induced cutaneous squamous cell carcinoma (cSCC) and suggest potential protective factors. RNA-seq-based differentially expressed genes between arsenic-exposed human keratinocytes (HaCaT) and controls were used to construct a protein-protein interaction (PPI) network and discover critical subnetwork-based mechanisms. Protective compounds against arsenic toxicity were determined and their target interactions in the core sub-network were identified by the comparative toxicogenomic database (CTD). The binding affinity between the effective factor and target was calculated by molecular docking. A total of 15 key proteins were screened out as critical arsenic-responsive subnetwork (FN1, IL-1A, CCN2, PECAM1, FGF5, EDN1, FGF1, PXDN, DNAJB9, XBP1, ERN1, PDIA4, DNAJB11, FOS, PDIA6) and 7 effective protective agents were identified (folic acid, quercetin, zinc, acetylcysteine, methionine, catechin, selenium). The GeneMANIA predicted detailed interactions of the subnetwork and revealed terms related to unfolded protein response as the main processes. FN1, IL1A and CCN2, as top significant genes, had good docking affinity with folic acid and quercetin, as selected key compounds. Integration of gene expression and protein-protein interaction related to arsenic exposure in cSCC explored the potential mechanisms and protective agents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call