Abstract

Screening T-cell activity and selecting active ones from large ex vivo-expanded populations before reinfusion is important for the success of T-cell therapy. Cytokine secretion is the evaluation criterion of cell immune activity. Cell membrane-anchored probes and microchamber-based techniques have been used to screen cytokine secretion at the single-cell level. However, they are either easily affected by nearby cells' secretion or lack of single-cell encapsulation efficiency. Here, we design a photodetachable DNA-copolymer nanocage on the cell membrane for screening the activities of ex vivo-expanded T cells by in-situ monitoring cytokine interferon-gamma (IFN-γ) secretion. The ones with good immune activity are selected for therapeutic application. DNA-copolymer nanocage is self-assembled on a cell membrane to encapsulate a single T cell. A self-quenched IFN-γ recognition aptamer is contained in the DNA-copolymer nanocage, which recovers fluorescence in response to IFN-γ secretion to indicate individual T-cell activity. The active T cells are collected after fluorescence-activated cell sorting, irradiated with 5 min UV light to detach nanocage from the cell membrane, and continuously cocultured with downstream cells. The selected Jurkat cells and CD19 CAR-T cells showed improved capabilities for downstream cell activation and cancer cell killing. The cell membrane-detachable DNA-copolymer nanocage-based T-cell activity screening and selection would have promising applications in T-cell therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.