Abstract

Due to global warming, late-spring coldness affecting wheat (LSCW) is one of the major abiotic adversities affecting wheat production. A combination of field and pot trials were conducted in this study. In the field experiment, 20 wheat varieties from the main wheat-producing areas in China were selected as experimental materials. By exploring the effects of LSCW on the spikelet characteristics and yields of different varieties, the evaluation methods and indexes of wheat varieties’ resistance to LSCW were established. Three varieties with strong resistance to LSCW (Yannong19, Guomai9, and Shannong17) and five varieties sensitive to LSCW (Zhengmai895, Xinmai26, Zhengmai366, Zhengmai8329, and Fanmai5) were screened out. The wheat varieties Yannong19 (YN19), with a strong resistance to LSCW, and Xinmai26 (XM26), with LSCW sensitivity, were selected as the test materials for the pot experiment. The ultrastructure changes in the wheat in different low-temperature treatments during the anther differentiation period were observed using an ultra-low-temperature artificial climate incubator set to 4 °C and −4 °C for 4 h (1:00–5:00 a.m.). The average temperature of the field during the low-temperature treatment was 10 °C, which was the control temperature (CK). The results showed that the cell morphology and chloroplast and mitochondrial structures of the functional leaves, young ears, and internodes below the ears were damaged, and the degree of damage was related to the cell location, the extent of low-temperature stress, and the resistance of the varieties. The degree of damage to the wheat cells was found to occur in the following order: young ears > internode belove young ears > functional leaves. The degrees of damage to the wheat cell, chloroplast, and mitochondrial structures increased with the intensification of the low-temperature stress. The damage to the XM26 variety was obviously greater than that inflicted on the YN19 variety. The anatomical mechanism of YN19 cells makes the cell structure more stable during late-spring coldness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.