Abstract

The continued burden of HIV in resource-limited regions such as parts of sub-Saharan Africa, combined with adverse effects and potential risks of resistance to existing antiretroviral therapies, emphasize the need to identify new HIV inhibitors. Here we performed a virtual screen of molecules from the pan-African Natural Product Library, the largest collection of medicinal plant-derived pure compounds on the African continent. We identified eight molecules with structural similarity to reported interactors of Vpu, an HIV-1 accessory protein with reported ion channel activity. Using in vitro HIV-1 replication assays with a CD4+ T cell line and peripheral blood mononuclear cells, we confirmed antiviral activity and minimal cytotoxicity for two compounds, ixoratannin A-2 and boldine. Notably, ixoratannin A-2 retained inhibitory activity against recombinant HIV-1 strains encoding patient-derived mutations that confer resistance to protease, non-nucleoside reverse transcriptase, or integrase inhibitors. Moreover, ixoratannin A-2 was less effective at inhibiting replication of HIV-1 lacking Vpu, supporting this protein as a possible direct or indirect target. In contrast, boldine was less effective against a protease inhibitor-resistant HIV-1 strain. Both ixoratannin A-2 and boldine also inhibited in vitro replication of hepatitis C virus (HCV). However, BIT-225, a previously-reported Vpu inhibitor, demonstrated antiviral activity but also cytotoxicity in HIV-1 and HCV replication assays. Our work identifies pure compounds derived from African plants with potential novel activities against viruses that disproportionately afflict resource-limited regions of the world.

Highlights

  • While recent advances in antiretroviral therapies (ARVs) have converted HIV to a chronic, manageable condition in many high-income settings, barriers remain for their successful use in low and middle-income countries with high disease burden; for example in parts of sub-Saharan Africa

  • Drug resistance has been documented to all licensed ARVs [5], and transmission of resistant HIV remains a major concern in many sub-Saharan African nations [6]

  • Of eight molecules identified in this screen, two were observed to inhibit in vitro HIV-1 replication in a CD4+ T cell line as well as peripheral blood mononuclear cells (PBMCs)

Read more

Summary

Introduction

While recent advances in antiretroviral therapies (ARVs) have converted HIV to a chronic, manageable condition in many high-income settings, barriers remain for their successful use in low and middle-income countries with high disease burden; for example in parts of sub-Saharan Africa. Natural products are a promising but undervalued resource for identifying new antivirals [2] Compounds derived from these sources can encompass structural diversity that falls outside the scope of chemical spaces found in many synthetic chemical screening libraries [1, 7]; as such, they have the potential to act via mechanisms distinct from those of conventional therapies. With this advantage in mind, the pan-African Natural Product Library (p-ANAPL) was formed to provide a centralized resource of pure compounds obtained from local plants with medicinal properties supported by indigenous knowledge [8]. The p-ANAPL represents an opportunity to screen for new inhibitors of pathogens that disproportionately affect countries on the African continent

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call