Abstract

BackgroundRheumatoid arthritis (RA) is a chronic autoimmune disease characterized by the destruction of synovial tissue and articular cartilage. Huangqi-Guizhi-Wuwu-Decoction (HGWD), a formula of Traditional Chinese Medicine (TCM), has shown promising clinical efficacy in the treatment of RA. However, the synergistic effects of key response components group (KRCG) in the treatment of RA have not been well studied.MethodsThe components and potential targets of HGWD were extracted from published databases. A novel node influence calculation model that considers both the node control force and node bridging force was designed to construct the core response space (CRS) and obtain key effector proteins. An increasing coverage coefficient (ICC) model was employed to select the KRCG. The effectiveness and potential mechanism of action of KRCG were confirmed using CCK-8, qPCR, and western blotting.ResultsA total of 796 key effector proteins were identified in CRS. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses confirmed their effectiveness and reliability. In addition, 59 components were defined as KRCG, which contributed to 85.05% of the target coverage of effective proteins. Of these, 677 targets were considered key reaction proteins, and their enriched KEGG pathways accounted for 84.89% of the pathogenic genes and 87.94% of the target genes. Finally, four components (moupinamide, 6-Paradol, hydrocinnamic acid, and protocatechuic acid) were shown to inhibit the inflammatory response in RA by synergistically targeting the cAMP, PI3K-Akt, and HIF-1α pathways.ConclusionsWe have introduced a novel model that aims to optimize and analyze the mechanisms behind herbal formulas. The model revealed the KRCG of HGWD for the treatment of RA and proposed that KRCG inhibits the inflammatory response by synergistically targeting cAMP, PI3K-Akt, and HIF-1α pathways. Overall, the novel model is plausible and reliable, offering a valuable reference for the secondary development of herbal formulas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call