Abstract

The purpose of this study was to develop a site targeting montelukast sodium (MTK) microparticles as a respiratory drug delivery system using the spray freeze drying (SFD) process. A range of sugars and cyclodextrins (CDs) were screened as carrier in order to find compatible excipients for the preparation of dry powder inhalers (DPIs). The physical characteristics of collected powders were studied by scanning electron microscopy (SEM), laser light scattering, differential scanning calorimetry (DSC), and X-ray diffraction (XRD). The aerodynamic behavior of the particles was also assessed using twin stage impinge (TSI). In the presence of simple sugars as carriers, highly porous particles in irregular shapes were produced. The use of CDs resulted in the formation of spherical particles with high porosity. Among all carriers that were used during the preparation of powders, raffinose had the best aerodynamic behavior with a fine particle fraction (FPF) of 60 % in sugar groups, while the lowest FPF was related to trehalose as carrier. Powders containing CDs mostly showed proper aerodynamic behavior, especially in formulations containing alfa-cyclodextrin (A-CD), beta-cyclodextrin (β-CD), and highly branched cyclic dextrin (HBCD). Overall, data indicated that the CDs were excellent excipients for use with MTK for respiratory drug delivery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call