Abstract

The thermal endurance of four pure and three binary eutectic mixture sugar alcohols were examined as a complementary work to the previous screening efforts based on the phase change behaviors towards latent heat storage. It was shown that both the melting point and latent heat of fusion of these sugar alcohols degrade with increasing the heating duration, and that a higher degree of superheat leads to faster degradation. The melting point drift mainly attributes to the shrinking range of hydrogen bonding, whereas the decay of latent heat is likely resulted from the disruption of hydrogen bond networks and incomplete crystallization. Among the various candidates, erythritol exhibits the best thermal endurance. The infrared spectra demonstrated that sugar alcohols can be oxidized to generate aldehydes upon heating when exposed to air. It was also found that the duration for 10% degradation of the latent heat of fusion of inositol can be extended by ∼9 times when being protected by nitrogen gas. However, although the introduction of nitrogen gas could efficiently improve the thermal endurance, other complex reactions can still occur in inert gas atmosphere at high temperatures, leaving the room for further improving the thermal endurance of sugar alcohols toward real-world applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call