Abstract

Worldwide, it is known that abiotic and biotic stresses can affect the production of crops by a declining trend. To control the situation, SnRK2 (a subfamily 2 of SNF1-related protein kinase) overexpression levels can induce salt tolerance. This study used a dataset for 2 types of Arabidopsis thaliana including the wild and PtSnRK2.7 overexpressed in mock and salt conditions to compare and identify the salt stress-responsive genes. A computational systems biology approach was employed to identify the differentially expressed genes and determine their mechanisms in terms of molecular functionalities, cellular components, KEGG enrichment pathways and plant ontology analyses. The results indicate that the 15 genes identified for PtSnRK2.7 overexpressed type in mock against salt conditions were upregulated (AT1G19180 and AT2G23150 were downregulated) and related to various environmental stresses. Furthermore, 8 out of 15 identified genes were downregulated for the wild type exposed to salt stress and the rest were upregulated. And, the only upregulated gene found differentially expressed between wild and overexpressed types in salt stress conditions was AT4G15110. In contrast, the other two AT1G15010 and AT4G19430 were downregulated and involved in transient stress and inactivation of chloroplast, respectively. Taken together, it has been shown that A. thaliana PtSnRK2.7 overexpressed type can resist salt stress. Finally, more experimental studies and computational systems biology methodologies are needed to reveal and confirm the responsive gene for salt stress in A. thaliana.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call