Abstract

Although phosphate solubilizing bacteria (PSB) have been globally reported to improve soil phosphorus (P) availability and plant growth, technical gaps such as the lack of an ideal screening approach, is yet to be addressed. The potential of non-halo-forming PSB remains underestimated because of the currently adopted screening protocols that exclusively consider halo-forming and PSB with high phosphorus solubilization (PS) capacities. Yet, caution should be taken to properly assess PSB with contrasting PS rates regardless of the presence or absence of the solubilization halo. This study sought to examine the PS rate and plant growth promotion ability of 12 PSB categorized as high PSB (H-PSB), medium PSB (M-PSB), and low PSB (L-PSB) based on their PS rates of rock phosphate (RP). The non-halo-forming PSB Arthrobacter pascens was categorized as H-PSB, which might have been eliminated during the classical screening process. In addition, induction of organic acids and phosphatase activity in rhizosphere soils by H-, M-, and L-PSB was proportional to increased wheat P content by 143.22, 154.21, and 77.76 mg P g-1 compared to uninoculated plants (18.1 mg P g-1). Isolates considered as M- and L-PSB could positively influence wheat above-ground physiology and root traits as high as H-PSB. In addition, non-halo-forming PSB revealed significant PS rates along with positive effects on plant growth as high as halo-forming PSB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call