Abstract
Osteoarthritis (OA) is a prevalent chronic health condition necessitating effective treatment strategies. Globally, there were 86 million people with incident knee osteoarthritis in 2020. Pain management remains the primary approach to OA as the nature of cartilage poses challenges for drug delivery. An emulsion-based delivery system, using a class of positively charged and hydrolysable polymers (poly-beta-amino-esters) to coat oil droplets containing drugs, has been shown to enhance and prolong drug localization in ex vivo cartilage models. As the properties of the polymers used in this technology strongly depend on the monomers used in the synthesis, this study presents the screening of a wide range of PBAEs as droplet coating agents and using ketorolac as a model of nonsteroidal anti-inflammatory drugs. The emulsions prepared with this PBAE library were characterized, and drug localisation and retention were evaluated in both native and glycosaminoglycan (GAG) depleted cartilage ex vivo models. Optimal candidates were identified and tested in an ex vivo model showing the ability to protect chondrocyte cell viability and increase both GAG and collagen contents in cartilage exposed to cytokine (IL-1α) simulating acute cartilage damage. This work demonstrates the potential of PBAE coated emulsion as a delivery system for effective drug delivery in OA treatment.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.