Abstract

Background Malignant pleural mesothelioma (MPM) is a rare, predominantly asbestos-related and biologically highly aggressive tumor associated with a dismal prognosis. Multimodal therapy consisting of platinum-based chemotherapy is the treatment of choice. The reasons underlying the rather poor efficacy of platinum compounds remain largely unknown. Kinase activity might influence cellular response to these regimens. Materials and Methods For this exploratory study, we screened MPM cell lines (NCI-H2452, NCI-H2052, and MSTO-211H) differing in response to cisplatin and benign control fibroblasts (MRC-5) for overall phosphorylation patterns as well as kinase activity with respect to cellular response to cisplatin-based therapeutics. We analysed the cell lines for cellular kinases in a high-throughput manner using the highly innovative technique PamGene. Cell state analysis including apoptosis, necrosis, and cell viability was performed by using enzyme activity and fluorescent-based assays. Results Cisplatin alters cellular phosphorylation patterns affecting cell cycle, migration, adhesion, signal transduction, immune modulation, and apoptosis. In cisplatin-responsive cell lines, phosphorylation of AKT1 and GSK3B was decreased but could not be influenced in cisplatin-resistant NCI-H2452 cells. Cisplatin-responsive cell lines showed increased phosphorylation levels of JNK1/2/3 but decreased phosphorylation in cisplatin-resistant NCI-H2452 cells. Conclusion Kinase phosphorylation and activity might play a crucial role in cellular response to cytostatic agents. Cisplatin influences phosphorylation patterns with distinct features in cisplatin-resistant cells. These alterations exert a significant impact on cell cycle, migration, adhesion, signal transduction, immune modulation, and apoptosis of the respective tumor cells. Based on our results, the induction of p38 or JNK1/3, or inhibition of AKT1 by, for example, BIA-6, might offer a positive synergistic effect by induction of an apoptotic response to cisplatin-based treatment, thus potentially enhancing the clinical outcome of MPM patients.

Highlights

  • Malignant pleural mesothelioma (MPM) is a rare, predominantly asbestos-related tumor and associated with a dismal prognosis [1, 2]

  • We aimed to investigate the impact of overall phosphorylation patterns as well as kinase activity in cellular response to cisplatin-based therapeutics

  • MSTO-211H has a distinct cluster in its phosphorylation pattern compared to the other MPM cell lines

Read more

Summary

Introduction

Malignant pleural mesothelioma (MPM) is a rare, predominantly asbestos-related tumor and associated with a dismal prognosis [1, 2]. Malignant pleural mesothelioma (MPM) is a rare, predominantly asbestos-related and biologically highly aggressive tumor associated with a dismal prognosis. For this exploratory study, we screened MPM cell lines (NCI-H2452, NCI-H2052, and MSTO-211H) differing in response to cisplatin and benign control fibroblasts (MRC-5) for overall phosphorylation patterns as well as kinase activity with respect to cellular response to cisplatin-based therapeutics. Cisplatin alters cellular phosphorylation patterns affecting cell cycle, migration, adhesion, signal transduction, immune modulation, and apoptosis. In cisplatin-responsive cell lines, phosphorylation of AKT1 and GSK3B was decreased but could not be influenced in cisplatin-resistant NCI-H2452 cells. The induction of p38 or JNK1/3, or inhibition of AKT1 by, for example, BIA-6, might offer a positive synergistic effect by induction of an apoptotic response to cisplatin-based treatment, potentially enhancing the clinical outcome of MPM patients

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call