Abstract

Cryptococcosis is one of the major invasive fungal infections distributed worldwide with high mortality rate. C. neoformans and C. gattii are the major organisms that cause various types of infections. Anti-fungal resistances exhibited by the mentioned species of Cryptococcus threaten their effective prevention and treatment. There is limited information available on human to human transmission of the pathogen and virulent factors that are responsible for Cryptococcus mediated infections. Hence, there is high scope for understanding the mechanism, probable drug targets and scope of developing natural therapeutic agents that possess high relevance to pharmaceutical biotechnology and medicinal chemistry. The proposed review illustrates the role of computer-aided virtual screening for the screening of probable drug targets and identification of natural lead candidates as therapeutic remedies. The review initially focuses on the current perspectives on cryptococcosis, major metabolic pathways responsible for the pathogenesis, conventional therapies and associated drug resistance, challenges and scope of structure-based drug discovery. The review further illustrates various approaches for the prediction of unknown drug targets, molecular modeling works, screening of natural compounds by computational virtual screening with ideal drug likeliness and pharmacokinetic features, application of molecular docking studies and simulation. Thus, the present review probably provides AN insight into the role of medicinal chemistry and computational drug discovery to combat Cryptococcus infections and thereby open a new paradigm for the development of novel natural therapeutic against various drug targets for cryptococcal infections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call