Abstract

Two-dimensional materials are excellent lubricants with inherent advantages. However, superlubricity has been reported for only a few of these materials. Unfortunately, other promising two-dimentional (2D) materials with different physical properties cannot be discovered or applied in production; thus, energy consumption can be greatly reduced. Here, we carry out high-throughput calculations for 1,475 2D materials and screen for low-friction materials. To set a standard, we propose, for the first time, a geometry-independent lubricating figure of merit based on the conditions for stick-slip transition and our theory of Moiré friction. For the efficient calculation of this figure of merit, an innovative approach was developed based on an improved registry index model. Through calculations, 340 materials were found to have a figure of merit lower than 10−3. Eventually, a small set of 21 materials with a figure of merit lower than 10−4 were screened out. These materials can provide diverse choices for various applications. In addition, the efficient computational approach demonstrated in this work can be used to study other stacking-dependent properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.