Abstract

Previous studies have focused on total cadmium (Cd) accumulation in rice or its transformation in soil, but only a few have examined the entire soil-rice-human system. This study investigated the Cd bioaccessibility and bioavailability for humans from grains of early rice cultivars grown in a Cd-polluted field and further combined with multi-traits to discover and evaluate the optimum safe production and phytoremediation potential cultivars. The results revealed that Cd concentration in polished rice was <0.20 mg kg−1 in 79 % of early rice cultivars, implying that Cd levels in rice might be reduced by cultivar selection. Furthermore, the higher values of root to straw translocation factor indicates the maximal accumulation of Cd in straw and with highest soil to straw accumulation factor (>1.0) in 66.67 % of cultivars. However, bioaccessibility and bioavailability varied greatly among cultivars with corresponding values ranging from 5.68 to 7.67 % and 1.87 to 5.71 ng g−1, respectively. Despite the fact that polynomial fitting revealed a statistically significant relationship between Cd content in polished rice and bioavailable Cd in humans (R2 = 0.718, P = 0.025), poor goodness of fit for bioaccessibility, bioavailability, and toxicity varied even within low-Cd accumulating cultivars. As a result of multi trait analysis and bioavailability, Zhuliangyou4024 (ER-9), Lingliangyou211 (ER-3), and Yonxian15 (ER-28) were found to be the three best early rice cultivars with higher essential nutrients, less total and bioavailable Cd, and relative high phytoremediation potential and are suitable for healthy rice production and soil remediation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call