Abstract

BackgroundThe use of active carbons derived from waste biomass as adsorbents in the remediation of wastewater remains a valuable and cost-effective technology when compared to the use of commercial active carbon for the same purpose. This research aims at using a 2-level full factorial design (FFD) to efficiently evaluate factors that influence the preparation of active carbon from the waste pods of the Dialium guineense seeds. The influence of three preparation factors (concentration of the activating agent, activation time, and type of activating agent) on the active carbon yield and its adsorption capacity for methylene blue were investigated. Based on the full factorial design, two regression models were developed to correlate the factors to the two responses. From an analysis of variance (ANOVA), the most significant factors influencing each response were identified. The active carbon preparation conditions were then optimized by maximizing both the active carbon yield and its adsorption capacity for Methylene Blue. The functional group and surface morphology of the active carbon prepared under the predicted optimum conditions was analyzed via Fourier Transform Infra-Red (FTIR) spectroscopy and Scanning Electron Microscopy (SEM) respectively.ResultsThe results of this study revealed that the concentration of the activating agent had the most significant effect on the yield of the active carbon produced as well as on its adsorption capacity for methylene blue. The optimum preparation process conditions were found to be: concentration of activating agent 5M, activation time 30 min and activating agent, NaOH which resulted in an active carbon yield of 21.25%, and an adsorption capacity of 9.33509 mg MB per gram of active carbon. SEM and FTIR showed evidence of successful activation.ConclusionThe preparation of Dialium guineense seed pods' active carbon is strongly influenced by concentration and type of activating agent used. Reliable statistical models based on the FFD proved to be useful in identifying factors that significantly influence the preparation of Dialium guineense seed pods' active carbon. The active carbon holds great potential for application in the elimination of hazardous synthetic dyes from wastewater and should be explored further.

Highlights

  • The use of active carbons derived from waste biomass as adsorbents in the remediation of wastewater remains a valuable and cost-effective technology when compared to the use of commercial active carbon for the same purpose

  • This paper aims to demonstrate the use of the seed pods of Dialium guineense, an agro-derived waste, for the preparation of active carbon and to evaluate the influence of selected preparation factors on its performance in terms of its yield and adsorptive capacity for methylene blue

  • A full factorial experimental design was employed to study the effects of three active carbon preparation variables, namely, the activation agent concentration, activation time, and type of activating agent, on the Dialium guineense active carbon yield and adsorption capacity for Methylene blue (MB)

Read more

Summary

Introduction

The use of active carbons derived from waste biomass as adsorbents in the remediation of wastewater remains a valuable and cost-effective technology when compared to the use of commercial active carbon for the same purpose. This research aims at using a 2-level full factorial design (FFD) to efficiently evaluate factors that influence the preparation of active carbon from the waste pods of the Dialium guineense seeds. The influence of three preparation factors (concentration of the activating agent, activation time, and type of activating agent) on the active carbon yield and its adsorption capacity for methylene blue were investigated. The active carbon preparation conditions were optimized by maximizing both the active carbon yield and its adsorption capacity for Methylene Blue. Methylene blue (MB) is a synthetic thiazine dye used extensively in several industries. It is a dye most commonly found in wastewater discharged from diagnostic laboratories and textile industries.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call