Abstract

Enhanced oil recovery (EOR) is a vital part of the process of oil production from sandstone and carbonate reservoirs. Maintaining and increasing oil production from many fields require proper selection, design, and implementation of EOR methods. The selection of EOR methods for specific reservoir conditions is one of the most difficult tasks for oil and gas companies. Screening of different EOR techniques considering previous experiences from the methods applied in other fields is a first step in the recommendation of any costly EOR operations. In this paper, EORgui software was utilized to screen eight enhanced oil recovery methods in one of Iran’s offshore sandstone oil fields. The reservoir is composed of two sections with different fluid properties, namely API, viscosity, and oil composition, but relatively homogeneous rock properties and high permeability (1500 mD). The results show that polymer flooding is technically the most suitable enhanced oil recovery method in the upper zone of the reservoir with a high percentage matching score of 90%, and immiscible gas injection with a matching score of 83% is ranked second. For the lower part of the reservoir containing a fluid with much higher viscosity, immiscible gas injection (83% matching) can be recommended. Furthermore, polymer flooding predictive module (PFPM) was utilized to investigate the impact of polymer concentration on oil recovery performance of the upper part with an ultimate recovery of about 40% at the optimum concentration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.