Abstract

The present study evaluated eight genotypes of river red gum (Eucalyptus camaldulensis Dehnh.) and a hybrid (E. camaldulensis × E. urophylla) for mannitol-induced water deficit (WD) under photoautotrophic conditions using multivariate cluster analysis. Shoot height, plant dry weight, and chlorophyll a content in hybrid genotypes, 58H2 and 27A2, were maintained when exposed to 200mM mannitol for 14days. In addition, the diminution of photosynthetic abilities, i.e. maximum quantum yield of PSII, photon yield of PSII, photochemical quenching, and net photosynthetic rate, under WD was minimal in hybrid genotypes compared to that in selection clones of E. camaldulensis. Under WD condition, there was greater accumulation of proline in all genotypes. A positive relationship was observed between physiological and morphological attributes under WD stress. Using Ward's cluster analysis, hybrid genotypes-H4, 58H2, and 27A2-were classified as water deficit tolerant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.