Abstract

Cape gooseberry (Physalis peruviana L.) is one of the most exported Andean fruits in Colombia. Vascular wilt caused by Fusarium oxysporum f. sp. physali (FOph) has led to a reduction in crop areas in recent years. Therefore, the aim of this study was to select genotypes with resistance to vascular wilt that can be useful as rootstocks from a group of six Physalis genotypes (Physalis ixocarpa, Physalis floridana, and Physalis peruviana genotypes Colombia, Sudafrica, Peru, and Accession 62) using physiological variables such as maximum quantum efficiency of Photosystem II (Fv/Fm), leaf gas exchange properties [net photosynthesis rate (Pn) and stomatal conductance (gs)], and leaf water potential. An experiment was carried out under greenhouse conditions in which plants of the different Physalis materials were inoculated with the F. oxysporum f. sp. physali strain Map5 at a concentration of 1 × 106 conidia mL–1. Physiological and disease development variables were measured at 15, 23, and 31 days after inoculation (DAI). The results obtained showed that P. peruviana genotypes Colombia and Sudafrica showed greater susceptibility to the disease (disease severity index 3.8 and 3.6, respectively). Net photosynthesis rate (Pn), stomatal conductance (gs), water potential (Ψfw), and Fv/Fm ratio were lower compared to non-inoculated plants. P. floridana and P. ixocarpa plants inoculated with F. oxysporum showed similar behavior to non-inoculated plants for the evaluated variables. In conclusion, the results obtained suggest that these two genotypes can be considered in breeding programs or as rootstock for the establishment of cape gooseberry crops in soils with the presence of the pathogen.

Highlights

  • Cape gooseberry (Physalis peruviana L.) is a fruit bush species from the Andean region of South America

  • The effect of FOph inoculation on different Physalis genotypes (P. ixocarpa, Sudafrica, Colombia, Accession 62, P. floridana, and Peru) was evaluated at the physiological and pathological levels in the present work to identify genotypes with potential as rootstocks to mitigate the negative effect of FOph in cape gooseberry crops

  • Low photosynthesis rate (Pn) and gs values have been recorded in studies performed by Wang et al (2015) and Sun et al (2017) in cucumber plants inoculated with F. oxysporum f. sp. cucumerinum

Read more

Summary

Introduction

Cape gooseberry (Physalis peruviana L.) is a fruit bush species from the Andean region of South America. It is of economic importance for Colombia due to the interest that international markets, mainly European countries, have shown in its fruits (Álvarez-Flórez et al, 2017; Cabrera et al, 2017). Colombia is one of the main global producers of cape gooseberry; vascular wilt caused by Fusarium oxysporum (FO) is a disease of great economic importance for this crop since FO has caused significant yield drops (Fischer and Miranda, 2012; Osorio-Guarín et al, 2016; Simbaqueba et al, 2018). FO can infect plants at any development stage and its characteristic symptomatology begins with root rot, marginal and total chlorosis of mature leaves, defoliation and plant death (Enciso-Rodríguez et al, 2013; Joshi, 2018)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call