Abstract

We introduce Coulomb interactions in the holographic description of strongly interacting systems by performing a (current-current) double-trace deformation of the boundary theory. In the theory dual to a Reissner-Nordström background, this deformation leads to gapped plasmon modes in the density-density response, as expected from conventional RPA calculations. We further show that by introducing a (d + 1)-dimensional Coulomb interaction in a boundary theory in d spacetime dimensions, we recover plasmon modes whose dispersion is proportional to sqrt{left|mathbf{k}right|} , as observed for example in graphene layers. Moreover, motivated by recent experimental results in layered cuprate high-temperature superconductors, we present a toy model for a layered system consisting of an infinite stack of (spatially) two-dimensional layers that are coupled only by the long-range Coulomb interaction. This leads to low-energy ‘acoustic plasmons’. Finally, we compute the optical conductivity of the deformed theory in d = 3 + 1, where a logarithmic correction is present, and we show how this can be related to the conductivity measured in Dirac and Weyl semimetals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.