Abstract
Pulses are a key source of dietary proteins in human nutrition. Despite several efforts to increase the production, various constraints, such as biotic and abiotic factors, threaten pulse production by various means. Bruchids (Callosobruchus spp.) are the serious issue of concern, particularly in storage conditions. Understanding host-plant resistance at morphological, biochemical and molecular levels is the best way to minimize yield losses. The 117 mungbean (Vigna radiata L. Wilczek) genotypes, including endemic wild relatives, were screened for resistance against Callosobruchus chinensis; among them, two genotypes, PRR 2008-2 and PRR 2008-2-sel, which belong to V. umbellata (Thumb.), were identified as highly resistant. The expression of antioxidants in susceptible and resistant genotypes revealed that the activity of phenylalanine ammonia lyase (PAL) was upregulated in the highly resistant wild Vigna species and lower in the cultivated susceptible genotypes, along with other biomarkers. Further, the SCoT-based genotyping revealed SCoT-30 (200 bp), SCoT-31 (1200 bp) and SCoT-32 (300 bp) as unique amplicons, which might be useful for developing the novel ricebean-based SCAR markers to accelerate the molecular breeding programme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.