Abstract

Forty seven chilli (Capsicum annum L.) genotypes were evaluated for their genetic potential to drought tolerant at germination stage using 12.5% polyethylene (PEG, MW6000). Relative germination energy (RGE), relative germination rate (RGR), relative germination index (RGI), relative vitality index (RVI) and their relative PEG injury rate were computed to identify the most tolerant genotypes on germination stage. Significant differences were observed among the genotypes, treatments and their interactions for evaluated traits suggesting a great amount of variability for drought tolerant in chilli. Based on aggregated score of RGE, RGR, RGI and RVI parameters BD-10906, BD-10912, BD-10911, BD-10916 and BD-10913 were the top five genotypes, whereas BD-10902, RT-20, AM-29, BD-10893 and BD-10930 lowermost five genotypes in the rank of drought tolerant which is an indication of their tolerant and susceptible to drought stress. The lowest relative PEG injury rate was observed in tolerant genotypes, contrary the highest rate was recorded in susceptible genotypes. Dendrogram using Agglomerative Clustering Method grouped the 47 genotypes into four different clusters at the 0.668 co-phenetic correlation coefficient. Drought tolerant chilli genotypes grouped in cluster I, while the susceptible genotypes clustered together in group III and IV and a number of moderate tolerant genotypes gathered in cluster II. Consequently the maximum mean values of tested parameters viz. RGR (91.30), RGE (30.43), RGI (40.58) and RVI (54.10) were observed in clusters I. Positive and significant correlation values were observed between the tolerant indications parameters. RGI showed comparatively strong and positive correlation with all tested parameters. Thus, tolerant and susceptible genotypes will be progressed for further tolerant study in seedling stage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.