Abstract
Four groups of catalysts have been tested for hydrodeoxygenation (HDO) of phenol as a model compound of bio-oil, including oxide catalysts, methanol synthesis catalysts, reduced noble metal catalysts, and reduced non-noble metal catalysts. In total, 23 different catalysts were tested at 100 bar H2 and 275 °C in a batch reactor. The experiments showed that none of the tested oxides or methanol synthesis catalysts had any significant activity for phenol HDO under the given conditions, which were linked to their inability to hydrogenate the aromatic ring of phenol. HDO of phenol over reduced metal catalysts could effectively be described by a kinetic model involving a two-step reaction in which phenol initially was hydrogenated to cyclohexanol and then subsequently deoxygenated to cyclohexane. Among reduced noble metal catalysts, ruthenium, palladium, and platinum were all found to be active, with activity decreasing in that order. Nickel was the only active non-noble metal catalyst. For nickel, the effect of support was also investigated and ZrO2 was found to perform best. Pt/C, Ni/CeO2, and Ni/CeO2-ZrO2 were the most active catalysts for the initial hydrogenation of phenol to cyclohexanol but were not very active for the subsequent deoxygenation step. Overall, the order of activity of the best performing HDO catalysts was as follows: Ni/ZrO2 > Ni-V2O5/ZrO2 > Ni-V2O5/SiO2 > Ru/C > Ni/Al2O3 > Ni/SiO2 ≫ Pd/C > Pt/C. The choice of support influenced the activity significantly. Nickel was found to be practically inactive for HDO of phenol on a carbon support but more active than the carbon-supported noble metal catalysts when supported on ZrO2. This observation indicates that the nickel-based catalysts require a metal oxide as a carrier on which the activation of the phenol for the hydrogenation can take place through heterolytic dissociation of the O–H bond to facilitate the reaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.