Abstract
The purine-cytosine permease from Saccharomyces cerevisiae mediates the active transport through the plasma membrane of adenine, hypoxanthine, guanine and cytosine using the proton electrochemical potential difference as an energy source. Analysis of the activity of strains mutated in a hydrophilic segment (371-377) of the polypeptidic chain has shown the involvement of this segment in the maintenance of the active three-dimensional structure of the carrier. In an attempt to identify permease domains that could interact functionally and/or physically with this segment, we looked for second-site mutations that could suppress the effects of amino acid changes in this region. This paper describes a positive screen that has allowed the isolation of one suppressor from a permease mutant displaying the N374I change (fcy2-20 allele), a substitution that induces a dramatic decrease in the affinity of the carrier for adenine, cytosine and hypoxanthine. The second-site mutation corresponds to the replacement of the Ser272 residue by Leu. Its suppressive effect is shown to be a partial restoration of the binding of cytosine and hypoxanthine to the permease. To test whether this second-site mutation is specific for the fcy2-20 allele, two double mutants were constructed (Fcy2pT213I, S272L and Fcy2pS272L, N377G). Results obtained with these two double mutants showed that the suppressive effect of S272 L replacement was not specific for the original N374I change. To understand the general effect of this amino acid replacement for the three distinct double mutants, a strain overexpressing Fcy2pS272I, was constructed. Kinetic analysis of this strain showed that, by itself, the S272 L change induced an improvement in the base-binding step that could account for its global suppressive effect. Moreover, S272 L induced a decrease in the turnover of the permease, thus showing the involvement of S272 in the translocation process. Taking into account the topological model of the permease proposed here, this Ser residue is probably located in a transmembrane amphipathic alpha-helix (TM5). The location and the observed decrease in the turnover of the carrier observed with the S272 L change lead us to propose that S272 could be part of a hydrophilic pore involved in the translocation of the base and/or the proton.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.