Abstract

Willows (Salix spp.) have been regarded as one of interesting plants for phytofiltration of water contaminated with trace metals. In this paper, the clonal differences in tolerance and phytofiltration capacity of mixed metals (Mn, Zn, and Cu) were evaluated in greenhouse pilot-scale wetlands with a floating-support culture system. The results showed that broad clonal variations of biomass accumulation in response to mixed metals ranging from growth inhibition to stimulation. Clones differed in tolerance to multi-metals by tolerance index (TI) based on shoot and root biomass. We also found that wide variations in uptake and accumulation of three metals, which was related to species/clones and metal species. The willows showed high Mn and Zn translocation capacity from roots to leaves suitable for phytoextraction. In contrast, all clones had poor Cu translocation capacity, and Cu mainly retained in roots suitable for rhizofiltration. Among all Salix clones, clones SM30 and J903 had large phytofiltration potential for three metals with their high tolerance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call