Abstract

Acute kidney injury is a common critical disease with a high mortality. The large number of indicators in AKI patients makes it difficult for clinicians to quickly and accurately determine the patient’s condition. This study used machine learning methods to filter key indicators and use key indicator data to achieve advance prediction of AKI so that a small number of indicators could be measured to reliably predict AKI and provide auxiliary decision support for clinical staff. Sequential forward selection based on feature importance calculated by XGBoost was used to screen out 17 key indicators. Three machine learning algorithms were used to make predictions, namely, logistic regression (LR), decision tree, and XGBoost. To verify the validity of the method, data were extracted from the MIMIC III database and the eICU-CRD database for 1,009 and 1,327 AKI patients, respectively. The MIMIC III database was used for internal validation, and the eICU-CRD database was used for external validation. For all three machine learning algorithms, the prediction performance from using only the key indicator dataset was very close to that from using the full dataset. The XGBoost algorithm performed the best, and LR was the next best. The decision tree performed the worst. The key indicator screening method proposed in this study can achieve a good predictive performance while streamlining the number of indicators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.