Abstract

Using gauge-gravity duality, we extend thermodynamic studies and present results for thermal screening masses in strongly coupled N=2* supersymmetric Yang-Mills theory. This non-conformal theory is a mass deformation of maximally supersymmetric N=4 gauge theory. Results are obtained for the entropy density, pressure, specific heat, equation of state, and screening masses, down to previously unexplored low temperatures. The temperature dependence of screening masses in various symmetry channels, which characterize the longest length scales over which thermal fluctuations in the non-Abelian plasma are correlated, is examined and found to be asymptotically linear in the low temperature regime.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call