Abstract
AbstractThe current study aimed to screen glyphosate-alternative weed control methods in three perennial crops in Greece. Field trials were conducted and repeated (2018 to 2019 and 2019 to 2020) in a citrus orchard (Citrus clementina Hort. ex Tan), an olive grove (Olea europaea L.), and a vineyard (Vitis vinifera L.) under the randomized complete block design (nine treatments, four blocks). Glyphosate was applied in the citrus orchard (720 g ae ha−1), the olive grove (720 g ae ha−1), and the vineyard (1,800 g ae ha−1). Pelargonic acid (1,088 g ha−1; two times), barley (Hordeum vulgare L.) residues and white mustard (Sinapis alba L.) residues were evaluated in all sites. Mowing was evaluated in the citrus orchard (one time) and the vineyard (two times). Flazasulfuron (50 g ha−1), oxyfluorfen (144 g ha−1), and flumioxazin (150 g ha−1) were applied in the citrus orchard and the olive grove. Penoxsulam + florasulam (15 + 7.5 g ha−1) was also applied in the olive grove. Cycloxydim (200 g ha−1), quizalofop-p-ethyl (150 g ha−1) and propaquizafop (150 g ha−1) were applied in the vineyard. An untreated control was included in all sites. Flazasulfuron, oxyfluorfen, and flumioxazin resulted in similar normalized difference vegetation index (NDVI) and weed biomass to glyphosate in the citrus orchard in both years and evaluations. Pelargonic acid (two times) and mowing (one time) were effective on broadleaf weeds. Flazasulfuron and penoxsulam + florasulam were the most promising glyphosate-alternative weed control methods against hairy fleabane [Conyza bonariensis (L.) Cronquist] in the olive grove. Cover crop residues showed their suppressive ability as in the citrus orchard. All selective herbicides resulted in similar NDVI and johnsongrass [Sorghum halepense (L.) Pers.] dry weight values in the vineyard in both years. Negative and strong correlations were observed in all sites and years between crop yield and weed dry weight (R2 = 0.543 to 0.924).
Highlights
In perennial cropping systems, weed presence contributes to soil conservation, improves soil fertility, and provides food and shelter to beneficial organisms (Mia et al 2020)
Glyphosate is a nonselective, systemic herbicide acting as an inhibitor of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) of the shikimic acid pathway
Glyphosate application resulted in the lowest values of E. crusgalli dry weight in both evaluations and years
Summary
In perennial cropping systems, weed presence contributes to soil conservation, improves soil fertility, and provides food and shelter to beneficial organisms (Mia et al 2020). Glyphosate is a nonselective, systemic herbicide acting as an inhibitor of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) of the shikimic acid pathway It is the world’s most important herbicide, with unique properties such as its excellent uptake and translocation and its toxicologically and environmentally safe profile (Duke and Powles 2008). In perennial orchards and fallow areas, it is the only herbicide that can be applied to perennial weeds at late growth stages and still be effective (Miller et al 1998) For all these reasons and more, glyphosate has been highlighted as the once-in-a-century herbicide (Duke and Powles 2008). Consecutive applications in perennial orchards and fallow areas pose a common phenomenon during the last decades and have resulted in the spread of glyphosate-resistant weed populations
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.