Abstract

The California table olive (Olea europaea L.) industry relies exclusively on hand harvesting of its primary Manzanillo cultivar. Increased harvesting costs have intensified industry interest in identifying an abscission agent that can be used with developing mechanical harvesting technologies to increase removal rates. Table olives are harvested immature green at horticultural maturity but before physiological maturity. The goal of this research was to reevaluate the potential of ethylene-releasing compounds (ERCs) as olive-loosening agents and to screen additional candidates previously shown to accelerate citrus fruit abscission. Eleven compounds were screened at two separate table olive-growing sites (Fresno and Tehama counties) in California in September until Nov. 2006. Compounds were applied at various concentrations alone or in combination. Fruit detachment force (FDF) and percent fruit drop were measured and leaf loss assessed. Of the compounds evaluated, the ERC ethephon (2-chloroethyl phosphonic acid) and 1-aminocyclopropane-1-carboxylic acid were the most efficacious. In whole tree applications, concentrations of ethephon or 1-aminocyclopropane-1-carboxylic acid above 1000 mg·L−1 reduced FDF to less than 50% of the untreated control within 17 days, but leaf drop increased with increasing concentrations. Addition of 1-methylcyclopropene reduced efficacy of ethephon and delayed leaf drop. Monopotassium phosphate + ethephon (4% and 1000 mg·L−1, respectively) reduced FDF and leaf loss was equivalent to the ethephon alone treatment. Compounds such as methyl jasmonate, coronatine, dikegulac, MAXCEL, traumatic acid, and 5-chloro-3-methyl-4-nitro-1H-pyrazole were not efficacious.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call