Abstract

The swine influenza virus (H1N1) 2009 pandemic highlights the importance of having effective anti-viral strategies. Recently, oseltamivir (Tamiflu) resistant influenza viruses are identified; which further emphasizes the urgency in developing new antiviral agents. In influenza virus replication cycle, viral surface glycoprotein, hemagglutinin, is responsible for viral entry into host cells. Hence, a potentially effective antiviral strategy is to inhibit viral entry mechanism. To develop novel antiviral agent that inhibits viral entry, we analyzed 20,000 traditional Chinese medicine (TCM) ingredients in hemagglutinin subtype H1 sialic acid binding site found on H1N1 virus. We then performed molecular dynamics simulations to investigate receptor-ligand interaction of the candidates obtained from docking. Here, we report three TCM derivatives that have high binding affinities to H1 sialic acid binding site residues based on structure-based calculations. The top three derivatives, xylopine_2, rosmaricine_14 and rosmaricine_15, all have an amine group that interact with Glu83 and a pyridinium group that interact with Asp103. Molecular dynamics simulations show that these derivatives form strong hydrogen bonding with Glu83 but interact transiently with Asp103. We therefore suggest that an enhanced hemagglutinin inhibitor, based on our scaffold, should be designed to bind both Glu83 and Asp103 with high affinity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.