Abstract
Various corticosteroids are prepared by using 11α,17α-diOH-progesterone (11α,17α-diOH-PROG) as an important intermediate and raw material. Hence, strains that can improve the yields of 11α,17α-diOH-PROG should be screened. Cunninghamella elegans CICC40250 was singled out from five common 11α hydroxylation strains. The reaction parameters of 11α,17α-diOH-PROG production were also investigated. C. elegans CICC40250 could efficiently catalyze the hydroxylation of 17α-hydroxy progesterone (17α-OH-PROG) at C-11α position. This strain could also effectively convert 11α,17α-diOH-PROG at high substrate concentrations (up to 30g/L). After the coenzyme precursor glucose was added, the rate of 11α,17α-diOH-PROG formation reached 84.2%, which was 11.4% higher than that of the control group. Our study established a simple and feasible mechanism to increase 11α,17α-diOH-PROG production levels. This mechanism involves C. elegans CICC40250 that can be efficiently applied to induce the biotransformation of 17α-OH-PROG with a hydroxylation biocatalytic ability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.