Abstract

Human embryonic stem cells (hESCs) undergo self-renewal while maintaining pluripotency. However, the molecular mechanism that demonstrates how these cells maintain their undifferentiated state and how they selfrenew is poorly understood. Here, we characterized an aneuploidy H1 hESC subline (named H1T) using karyotyping and comparative genomic hybridization (CGH) microarray. Because the H1T hESC line displays a self-renewal advantage while maintaining an undifferentiated state, we speculated that the expression patterns of specific genes which are related to pluripotency or differentiation were altered; therefore, we attempted to screen for molecules that are propitious for maintenance of stemness by performing a combination of mRNA and CGH microarray analysis which compared the aneuploidy H1T hESC subline versus the euploid H1 hESC line. It is discovered that some genes are up-regulated in H1T hESC subline such as TBX2 and Wnt3, while some are downregulated, for example, Fbxo7 and HMG2L1. Our findings should fascilitate the study of the complex signaling network which maintains hESC pluripotency and function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call