Abstract

The formation of cocrystal hydrates represents a potential route to achieve molecular materials with improved properties, particularly stability under conditions of high relative humidity. We describe the use of neat and liquid-assisted grinding for screening for hydrated forms of pharmaceutical cocrystals. In the case of liquid-assisted grinding, water is present in the reaction mixture as a liquid, whereas in the case of neat grinding, it is introduced by employing crystalline hydrates as reactants. The ability to form a cocrystal hydrate by either of the two methods appears to be variable, depending on the choice of cocrystal components. Theophylline readily forms a cocrystal hydrate with citric acid. This contrasts with the behavior of caffeine, which provides only an anhydrous cocrystal ("caffeine citrate") even when both reactants are crystalline hydrates. The preference of theophylline to form a cocrystal hydrate is qualitatively explained by similarity between crystal structures of the products and reactant hydrates. Overall, liquid-assisted grinding is less sensitive to the form of the reactant (i.e., hydrate or anhydrate) than neat grinding. For that reason liquid-assisted grinding appears to be a more efficient method of screening for cocrystal hydrates, and it is also applicable to screening for hydrates of APIs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.